PDC4S:\IT\DATA SCIENCE AND MACHINE LEARNING\[365 Data Science] Programming for Data Science\18. SQL + Tableau + Python\4. Applying Machine Learning to the Preprocessed Data |
Up one directory... |
|
1. Exploring the Problem from a Machine Learning Point of View.mp4 | 26,115 KB | 12/12/2021 3:34 AM |
10. Interpreting the (Important) Coefficients.mp4 | 28,790 KB | 12/12/2021 3:34 AM |
11. Simplifying the Model (Backward Elimination).mp4 | 38,783 KB | 12/12/2021 3:34 AM |
12. Testing the Logistic Regression Model.mp4 | 42,446 KB | 12/12/2021 3:34 AM |
13. Saving the Logistic Regression Model.mp4 | 31,133 KB | 12/12/2021 3:34 AM |
14. Creating a module for later use of the model.mp4 | 50,805 KB | 12/12/2021 3:34 AM |
2. Creating the Targets for the Regression.mp4 | 35,214 KB | 12/12/2021 3:34 AM |
3. Selecting the Inputs for the Regression.mp4 | 12,553 KB | 12/12/2021 3:34 AM |
4. Standardizing the Dataset for Better Results.mp4 | 15,996 KB | 12/12/2021 3:34 AM |
5. Train-Test Split.mp4 | 40,881 KB | 12/12/2021 3:34 AM |
6. Training and evaluating the model.mp4 | 33,435 KB | 12/12/2021 3:34 AM |
7. Extracting the Intercept and Coefficients.mp4 | 34,193 KB | 12/12/2021 3:34 AM |
8. Interpreting the Coefficients.mp4 | 47,589 KB | 12/12/2021 3:34 AM |
9. Creating a Custom Scaler to Standardize Only Numerical Features.mp4 | 34,679 KB | 12/12/2021 3:34 AM |